as4c
454

9 3a77 2020
e 6664 690a 20

Niklaus ‘vimja’ Hofer
niklaus@mykolab.ch

7033 7d74

6570 0 7460
7461 5002
6567 6d6e

» |T student at BFH

» Specialisation in Infosec
» Been working with Blockchain Technology for 1.5 years
» Bachelor thesis on the analysis of the Bitcoin Blockchain

» Founding member of the Chaostreff Bern

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Content |

Systems for representing ownership
State-transition systems
Double-spend

Blockchain (without PoW)
The underlying network
Establishing a Consensus
Double-spend on Blockchains

Blockchain
PoW and mining
Solving double-spend
Bitcoin
Blocks
Light clients
Bonus Slides
Branches in the chain
Double-spend

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Content Il

Mining

Niklaus 'vimja’ Hofer | Introduction to Blockc! | 33¢3 | February 20, 2019

2019-02-20

LContent

With this presentation, | want to tell you not only how Blockchains work, but
also why they work the way they do and why the ideas and concepts are
robust enough.

Section 1

Systems for representing ownership

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Subsection

Systems for representing ownership
State-transition systems

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Systems of ownership as state-transition-systems

Systems representing ownership can be modelled as state-transition system.
» Finance
» Estate
> .
Mapping:
State Collection of who owns what
Transition Transferring ownership to someone else
Example for financial system:
State Collection of all accounts
Account Owner and associated amount
Transition Transaction (Moving value from one account to another)

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LSystems for representing ownership
| State-transition systems
LSystems of ownership as state-transition- system‘ :

One of the core ideas of this talk is that ownership can be represented as a
state-transition system.

If we represent ownership in a state-transition system, then a state is the
information about who owns what at a given point in time. If someone
transfers ownership to someone else (for example by selling an object), then
that marks a transition which leads to a new state.

We can easily map financial systems to a state-transition-system. All
accounts together represent the state. Every time someone makes a
transaction, this marks a transition in the system which leads to a new state.

Showcase

(ot e)
Plot Nr: 23

Owner: Alice

IR
Plot Nr: 42

Owner: Bob

(o vt 2o)
Plot Nr: 43

Owner: Sam

I VR
Plot Nr: 44

Owner: Hans

—

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

—>

Transition

Sell

Plot Nr: 42
From: Bob
To: Alice

(ot e)
Plot Nr: 23

Owner: Alice

e n)
Plot Nr: 42

Owner: Alice

(ot rnt 1o)
Plot Nr: 43

Owner: Sam

(o~ 2)
Plot Nr: 44

Owner: Hans

—

2019-02-20

LSystems for representing ownership
L State-transition systems
L Showcase

Here we have an example of an estate system expressed as a
state-transition system. A state is the collection of all Plots. Each plot has an
owner assigned. The state describes by whom each plot is owned. If a plot is
sold, such as in the example where Bob sells Plot number 42 to Alice, the
system transitions into a new State.

Subsection

Systems for representing ownership

Double-spend

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Consensus

» Consensus is very important
» Before each transaction, all parties need to agree on the current state!
» The reason for this: double-spend

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LSystems for representing ownership
LDouble—spend
L Consensus

Consensus means that all parties of the system agree on the state of the
system. | will now show how the system can be exploited if the parties can’t
agree on a state.

Double-spend

» To spend something twice

» Spending the same money twice
» Selling the same plot twice
>

» Obviously malicious
» Well known attack in the Blockchain / Bitcoin world

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LSystems for representing ownership
- Double-spend
LDouble-spend

Double-spend is the action of spending the same thing twice. This is rather
abstract for digital currencies such as the money we have on bank accounts.
It's hard to imagine anyone spending the same money twice that way. It's
rather simpler to imagine double-spend with estate: Imagine someone selling
the same plot twice.

Double-spend estate example

Malroy has a nice property (Plot number 5)

Alice is looking to buy a new property

Bob also wants to buy a new property

Malroy will attempt to sell the same plot to both of them!

vV v v v

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Example: Alice’s view

State A

Transition

Sell
Plot Nr: 5
From: Malroy
To: Alice

State B

2019-02-20

LSystems for representing ownership

| Double-spend _.E]
L Example: Alice’s view =13=
B B

Alice pays Malroy for the plot and Malroy transfers ownership of the plot to
Alice. This results in a new state where Alice is now the owner of plot 42.
Both Alice and Bob know about this new state the system is now in.

Example: Bob’s view

» Bob does not know about the transfer of ownership from Malroy to Alice

State A State B
G

Plot Nr: 5
Owner: Malroy

Plot Nr: 5
Owner: Bob

_>
Plot Nr: 23 Transition
Owner: Alice Sell

Plot Nr: 5

Plot Nr: 42 From: Malroy
Owner: Bob To: Bob

Plot Nr: 43
Owner: Frank

~—————

Bob has paid for the plot. He thinks it’s now his.

Plot Nr: 23
Owner: Alice

Plot Nr: 42
Owner: Bob

Plot Nr: 42
Owner: Bob

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LSystems for representing ownership e s e e i
LDouble—spend — =
ey
LExample: Bob’s view)
E=J &

Let’s imagine Bob has never learned about the previous transfer of ownership
which has led to "State B". Bob is still of the opinion that Malroy is the rightful
owner of Plot number 5. So bob will happily "buy" the plot from Malroy who
will pretend to transfer ownership over the plot to Bob.

Example: problem

Problem: Malroy sold the same plot twice!
Alice and Bob do not agree on the current state of the system
Their views on the state are incompatible

This breaks the system:

» Possibility to sell plots many times
» People can'’t trade with each other

vV vy VY

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LSystems for representing ownership
LDouble—spend
LExample: problem

Bob having sold the plot twice is malicious of course. For him it means profit,
but for Alice and Bob it’s a big problem. Who owns the plot now? Who can
use it and who can sell it to someone else. This is also a problem for other
people who might want to buy the plot. Who can they buy it from? Having this
situation clearly messes up the system. Some kind of conflict resolution
would be needed. It would be even better though, if situations like this didn’t
occur in the first place.

Solution

Simple solution in the estate world:
Registry of deeds (Grundbuchamt)
Central authority

Controls the state of the system

Every time an estate is sold (a transition is made), it has to be done via the registry of
deeds

For each transition, the central authority performs certain checks to make sure the
transition is compatible with the current state and either accepts or rejects it

That way, everybody can agree on a certain state and that state is always valid.

vV v v v

v

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LSystems for representing ownership
LDouble—spend
L Solution

The double-spend problem has been solved in the estate world. The local
registry of deeds watches over the state of the system. Each time a plot is
sold, the registry of deeds has to be informed. If they notice an inconsistency,
they can intervene.

Take the above example: Malroy wants to sell the plot to Alice. So they go to
the registry of deeds together. The registry of deeds checks that the plot
really belongs to Malroy. When the Malroy transfers ownership to Alice, the
registry of deeds updates their records accordingly. Later on, when Malroy
comes back with Bob to sell the plot to him, the registry of deeds will see in
their records that Malroy does not own the plot any longer and will prevent
him from selling it from Bob. The attack has been prevented.

Solution for monetary systems

Requirements:

» All parties need to agree on the current state

» All parties need to agree on whether a transition is valid
Banks as central authority:

» Banks serve as central authorities

» They control the state and check all transitions

» Always the case for modern day money transfers
This works surprisingly well.

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LSystems for representing ownership
LDouble—spend
L Solution for monetary systems

The same solution that worked for the estate system, a central authority
controlling the state, can also work for monetary systems.

Typically we see this when making monetary transactions via our banks. The
bank acts as a central authority that manages the state and ensures the
integrity of the system.

A Solution for the internet

Requirements:

» Decentralized

» Needs to work on the internet
Central authority:

» Possibility of censorship

» Can be attacked

» Collects all the data

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LSystems for representing ownership
LDouble—spend
LA Solution for the internet

If we are looking for a system that allows the participants to agree on a state
over the internet, it gets a bit more complicated.

Having a central authority manage the state would of course work. Think of
Paypal: They are doing just that - allow anyone to make transactions via the
internet in a secure manner. Paypal acts as the central authority managing
the state and ensuring the integrity of the system.

However, a central authority can censor the system, can be attacked and
hacked and it can of course collect all the data of its users. This then is not
an adequate solution for a decentralized internet. Paypal should be prove
enough that this is not the solution we are looking for.

A new system is required. A system appropriate for the Internet age.

Section 2

Blockchain (without PoW)

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)

In this chapter | will introduce the basic ideas of Blockchain systems but
without Proof of Work (PoW). | will show how they allow the participants to
agree on a state. Without PoW though, the concepts explained here ware
insufficient to secure the Blockchain. This is demonstrated by showing a
double-spend attack.

The next chapter will introduce PoW and show how it makes the Blockchain
secure.

Another solution

Blockchain is an internet-age solution to the same problem. It provides these (amazing)
properties:

No central authority

Parties do not need to trust each other

Parties need no information on who is participating

... not even any information on how many others are participating

And still they can all agree on a state

vV v.v. v .Yy

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Subsection

Blockchain (without PoW)
The underlying network

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
L The underlying network
L Subsection

Let’s first talk of the network we use to distribute transactions among all
participants.

The general idea

v

We all agree on an initial state

» Could be an empty state
» Or something else

We build a peer to peer network
Transactions are published / announced to the p2p network
Network relays transactions

v

v

v

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
L The underlying network
L The general idea

We build a Peer to Peer (p2p) network used to distribute the transactions
amongst all participants. Everyone who makes a transaction announced that
to the network. The network the relays the transaction until all participants
have seen it.

Distributing transactions

All sorts of problems:
» Network out of sync
Order unclear
Double-spend attempts
Conflicting transactions
Transactions dependant on conflicting transactions

vvyyvyy

Incompatible!

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without PoW)
L The underlying network
LDistributing transactions

854/a8
The transactions on their own are a big mess. Because of delays in the
network they don’t get consistently spread to all participants, the order in
which they arrive may be random, there might even be conflicting transaction.
People will attempt double-spends and other attacks.

Subsection

Blockchain (without PoW)

Establishing a Consensus

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Introducing: the Blockchain

A method is needed to establish a consensus, to agree on a state.
We call this method: Blockchain
(For now: Without Proof of Work, PoW)

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LEstablishing a Consensus
LIntroducing: the Blockchain

We need a way to assemble the transactions which get distributed through
our P2P network. We need a method for agreeing on a state which explicitly
defines which transactions are valid.

The system to do that is the Blockchain.

(Again: The Blockchain explained in this chapter is a blockchain without
Proof of Work (PoW). Because of that it is incomplete and insecure. The next
chapter will introduce POW and explain how it secures the Blockchain.)

Blocks

Group transactions into blocks
Blocks depend on one-another
Anyone can form a new block at any time

We define the current state as:
» All transactions within the longest branch of blocks applied to the initial state
» Transactions only become part of the state once they are inside a block
Blocks have to meet certain criteria:
» All transactions within the block must be valid

» Transactions within the block have to be compatible with one another
» Transactions within the block have to be compatible with transactions in earlier blocks

vV Yy Vvoy

v

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
I—Establishing a Consensus
L Blocks

Here is what we do to establish a consensus: We group the transactions into blocks. Anyone can collect a bunch of transactions and turn
them into a new block at any time. Whenever a new block is formed, it is then announced by it's creator to the network which will relay the
block to all participants.

The blocks depend one one-another. That is to say, every block has a reference to the block that came before it. That way, the blocks can
be connected to a distinct chain of blocks.

All participants agree on a simple rule: The state is the longest chain of blocks. So to form the current state, one takes the initial state and
then applies all transactions from block #1, then the transactions from block #2 and so on until all transactions from all blocks have been
applied. The result is the current state of the system.

To make sure the resulting state is unambiguous, all blocks have to meet certain criteria.

e They may only contain valid transactions.
— Transactions which transfer a negative amount of money for example are not allowed
e All the transactions have to be compatible with one another. So if someone attempts to spend the same money twice, only one of the two transactions may be part of the
same chain

Blocks which do not meet these criteria are not valid blocks and are to be ignored by the participants of the system.

Visualization of Blockchain concepts

Initial state (empty)

) / current state
Bockit ’{j = U
000 O
| 000/ obg 0

O
¥

» Group transactions into blocks

» Transactions only become part of the state once they are are inside a block

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LEstablishing a Consensus
L Visualization of Blockchain concepts

Transactions are grouped into Blocks. Only the transactions which included in
a block are part of the state. Transactions that have arrived but not yet
included in a block, should be ignored by the client software when calculating
the current state.

Visualization of Blockchain concepts

Initial state (empty)

H /Block #1 Block #2 /
000—B0a0
000 00000

A

O
O
O
O

» Blocks depend on one-another
» Anyone can form a new block at any time

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LEstablishing a Consensus
L Visualization of Blockchain concepts

Each block has a reference to its previous block. That way the chain from the
latest block to the initial state is unambiguous.

Blocks can be created by anyone at any time. This is important: We want a
decentralized network where anyone can participate and noone is able to do
censorship. This way a transaction that is ignored by one participant might be
included in a new block by another.

Visualization of Blockchain concepts

Initial state (empty)

/ current state

000—B0a0
000 00000

A

O
O
O
O

» Blocks have to meet certain criteria:
» Transactions within the block have to be compatible with one another

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LEstablishing a Consensus
L Visualization of Blockchain concepts

Blocks which do not meet the criteria listed above should be ignored by the
participants of the network when calculating the current state.

In this example, the "Block #3" contains two transactions which are not
compatible with one another. We do not allow for such blocks and thus this
block is dubbed invalid and not part of the state.

Visualization of Blockchain concepts

Initial state (empty)

/ current state

000
J 000 00000 Ot

A

O
O
O
O
O
O

» Blocks have to meet certain criteria:
» Transactions within the block have to be compatible with transactions in earlier blocks

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LEstablishing a Consensus
L Visualization of Blockchain concepts

"Block #4" contains a transaction which is not compatible with another
transaction which is part of "Block #3". We do not allow this since it would
result in the state not being unambiguous. Since the block violates one of our
rules, it is not a valid block and does not become part of the state.

Visualization of Blockchain concepts

. Block #3
Initial state (empty)

Y /g™

current state ?

Block #1 Block #2 Block #3
000 00 /

000l Co0og oo

)

A

O
O
O
O

» We define the current state as: All transactions within the longest branch of blocks
applied on an empty state

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LEstablishing a Consensus
L Visualization of Blockchain concepts

Both of the "Block #3" are valid. They also both form a chain of the same
length. This means that the state of the network is no longer unambiguous.
Every client might decide for themselves which of the two states they want to
accept as the current state.

Visualization of Blockchain concepts

Initial state (empty)

)

/

00
L0

Block #4

A

00

Block #1

000
000

A

A

Block #2

— ———> ———> ———> ——>

A

00
00

o900
N\

current state

» We define the current state as: All transactions within the longest branch of blocks
applied on an empty state

aus 'vimja' Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LEstablishing a Consensus
L Visualization of Blockchain concepts

Someone has created a new "Block #4". Because the block has a pointer /
reference to the block before it, it is obvious which "Block #3" the new block
depends on. One of the two chains has thus become longer than the other
and is now accpted by the network as the current state.

Which previous block the new one should depend on is left to the person who
creates the new block. It is their sole decision.

Subsection

Blockchain (without PoW)

Double-spend on Blockchains

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LDouble-spend on Blockchains
L Subsection

The double-spend attack covered in this chapter is the same one potentially
used against real Blockchains. Here it can succeed because we don’t use a
Proof of Work (PoW). In the next chapter we will discuss how actual
Blockchains use PoW to protect against that kind of attack.

Double-spend on a Blockchain without POW

State
Transaction

From: Malroy

To: Alice Owner: Alice

Amount: 1000

n
Balance: 337

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LDouble-spend on Blockchains

@: =
LDouble—spend on a Blockchain without POW

Alice has a shop which sells bicycles. In this example, Malroy will attempt to
steal a bicycle. That is to say, he will get Alice to give him the bicycle, but he
will keep the money he was supposed to pay for it.

So he goes to Alice and choses a bicycle. This certain bicycle has a price of
1000 Euro. He makes a transaction transferring the 1000 Euro to Alice. A
short while later, someone will create a block including this transaction which
results in the transationg becoming part of the state. This means that Alice
has received the money. She now hands over the bicycle to Malroy who
drives off with it. Further blocks are created over time.

Double-spend on a Blockchain without POW

State
Transaction Transaction (A
From: Malroy From: Malroy
Ak K Owner e
To: Alice To: Malroy_2 Balance: 42
Amount: 1000 Amount: 1000
Balance: 337
Owner: Malroy_2
Balance: 1000

/

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without PoW) I
LDouble-spend on Blockchains &) [/j ’} ‘
LDouble—spend on a Blockchain without POW Lo

Malroy who has gotten the bicycle and left to go somewhere save, now starts
the attack. He creates a new transaction which transfers the same money he
previously sent to Alice to a second account of his instead. This transaction is
of course incompatible with his first and won’t become part of the chain if he
just publishes it.

So Malroy creates a new, alternative block containing this second transaction.
Then, he creates a bunch more blocks which all depend on the first one he
created. He continues creating more blocks quickly until his chain is longer
than the chain currently used on the network. Then he publishes the chain of
blocks he has created to the network.

This chain created by Malroy is now the longest chain on the network and
thus gets accepted as the state of the system. In this state, Malroy will owns
all the money, now distributed over two accounts. The transaction transfering
the money to Alice is not part of the state anymore.

Problems

» Double-spend works
» It is easy and cheap to create blocks
» Anyone can create any number of blocks at no cost

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain (without Pow)
LDouble-spend on Blockchains
L Problems

As demonstrated above, the Blockchain described in this chapter is insecure.
It is vulnerable to double-spend attacks. This is because the Blockchain
described here is incomplete. Let’s see how to fix that in the next chapter.

Section 3

Blockchain

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Subsection

Blockchain
PoW and mining

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

The problem

» Problem: Creating blocks is easy
» Solution: Make creating blocks hard

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain
L—Pow and mining

L The problem

In the previous chapter, Malroy performed a double-spend attack. He did this
by creating a large number of blocks quickly to form a branch of the
Blockchain that was longer than any other.

The problem is, that it's easy and quick to create new blocks. The solution
then is simple: Make creating new blocks hard and time consuming.

v

v

v

v

v

Define a challenge taking a block as input

For every new block created, the challenge has to be solved
» Expensive in time and compute power

The solution is called a Proof of Work (PoW)
» The process of creating a PoW is called mining

The PoW is to be published with the new block

Only blocks with a valid PoW are valid blocks

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain
L—Pow and mining

L Pow

To make creating blocks hard, we define a challenge that has to be solved by
anyone who wants to create a new block. The challenge is dependant on the
block it is created for and is thus different for each block. The solution to the
challenge has to be published together with the block and is called a "Proof of
Work" or PoW for short, since it is proof that the person creating the block,
called the miner, has performed the work necessary to find this solution.

We change the rule for valid blocks so that blocks that do not have a PoW or
which’s PoW is not valid, are not valid blocks and are to be ignored by the
clients on the network.

Creating PoW protected blocks

current state

Block #n Block #n+1

~— 000 @@@ Q

i —p — ———p ®

0od) 000 O

.................................

» Work on the block is going on
» New transactions arrive

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain
L—Pow and mining

LCreating PoW protected blocks

The process of creating blocks changes a bit with the introduction of PoW.
They can no longer be created just like that. Miners, which are the people
creating new blocks, are constantly working on the next block. In the figure
above, the block that is currently being worked on by a miner, is marked by
the dotted line. The transactions that will be part of that block are not yet part
of the state.

During the time a new block is worked on, new transactions arrive at the
miner's machines. The miner stores them in what is called the transaction
pools. Transactions in the transaction pool are potential candiates for
inclusion in the next block. Each time a new valid block is announced on the
network, the miners immediately start work on the next block. Which
transactions a miner wants to include in the block they create is their own
decision.

Requirements for POW

The function / challenge used for the PoW has to meet certain requirements:
» Be hard! Solvable only by brute force
» Validation needs to be fast and easy

» Dependant on the exact block it is produced for
» To prevent pre-compute attacks

» Variable difficulty

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockehain
PoW and mining

I—Requirements for PoW

A client receiving a block and supposedly matching PoW needs to be able to verify the PoW quickly so it can decide whether that block is
actually part of the state. So even though creating a PoW needs to be hard, checking it needs to be simple.

The challenge being dependant on the block, that is to say the collection of transactions, it was created for, is very important. If it was not,
Malroy could pre-compute a large number of PoWs over a long time and later attach them to some independant blocks to quickly create a
long chain of blocks. If however, the PoW is fully dependant on the block it is created for, work on the PoW can only begin once the exact
content of the block is known. So in the best case, work on the PoW for a new block, can only start when the block before that is known.

If the system is used for financial transactions, the time it takes for new blocks to appear needs to be stable. For those making transactions,
knowing how long it takes for those transactions to become validated is important. But if the network’s total compute power increases, the
time it takes until a miner successfully creates a new block becomes lower. This is why the difficulty of the problem to be solved should be

variable, so it can be changed over time as the network’s compute power changes.

Reward

For mining to be worthwhile, a reward is needed:
» A transaction from nowhere to the miner

» Transaction fees
» Coinbase / new money

» Included in the block
» Makes blocks individual
» Ensures distribution of success amongst all miners

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockehain
L—Pow and mining

L Reward

Now that Mining is costly (taking time and using compute power), we need an incentive, otherwise no one is going to do it. The solution
used in PoW based Blockchains is called a block-reward. It’s a reward going to the person who creates the block.

The easy way to do this is to allow the miner to add a special transaction in the block they create. This transaction transfers money to the
miner. It is called a Coinbase transaction. This money can come from various sources:

e The transaction fees of the transactions included in the block
o New money that is introduced into the system

The second option is interesting with the above example where we defined the initial state as an empty state where noone owned any
money. This gives us a fair and independent means of bringing money into the initially empty system.

Of course, each miner will transfer the money in the Coinbase transaction to themselves. Because of that, each Coinbase transaction is
different. That also means that the exact problem the miner is working on is individual to them, since it depends on the exact input which
includes the Coinbase transaction. This ensures another important property:

Imagine if all miners were working on the same exact problem in the same manner. The first miner to find the solution would be the one
with the most compute power. Always. That is bad since we want many people to create blocks to prevent censorship. By having all miners
on slightly different problems, we give those who have less compute power a chance of finishing first by chance.

In practice, this ensures that the chance of finishing a block first, is roughly equal to the amount of compute power a miner has. That is to

say, a miner with 20% of the network’s power will generate about a fifth of all blocks.

Mining |

Which branch should a miner work on?

v

v

For the reward to be spendable, it needs to be part of the state

v

The state is the "longest" branch

v

So it only makes sense to work on the "longest" branch

v

Works without any coordination!

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain
L—Pow and mining

LMining

We have seen in some of the examples above, that there might be multiple
competing branches in a Blockchain. So each miner needs to decide which
of those branches they want to work on.

The revard a miner gets, as mentioned above, is a special transactions. If the
miner wants to spend the money they get from this transaction, then it needs
to be part of the state. It is only part of the sate, if the block it is included in is
part of the state. For this reason, it's only interesting for miners to work on the
longest branch. This makes sure, that all miners are working on the longest
branch without any coordination being necessary.

This is important to ensure that the power of the miners gets combined to
produce a single branch at the fastest speed possible. Malroy will have to
compete against all of them at once when trying to create a separate branch.

Subsection

Blockchain

Solving double-spend

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

- Blockchain
LSolving double-spend

LSubsection

Let’s revisit the double-spend attack from earlier. The attack remains the
same, except that we now have PoW enabled on our Blcokchain.

Double-spend

-
» Work on the next block starts

» Malroy is the only one working
Balance: 42 on a different block

Owner: Malroy
Balance: 1337

State
Transaction Transaction

From: Malroy
To: Alice
Amount: 1000

From: Malroy
To: Malroy_2
Amount: 1000

Malroy is working here

:4— The 'network' is working here

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

- Blockchain
LSolving double-spend

LDouble-spend \/
OO

Note how blocks don’t just suddenly appear anymore. Instead the miners are
constantly working on new blocks. This is represented by the dotted blocks.
The situation is largely the same as it was for the same attack in the last
chapter. Malroy starts work on his branch as soon as the previous block has
been announced to the network. However, this time, Malroy can’t easily
create a longer branch. He needs to mine each block. This is a lot of work.
Since Malroy’s mining power is less than the combined power of all the other
miners in the network, Malroy creates new blocks at a slower rate. Thus, his
branch never becomes the longest one and never becomes the state of the
system.

The attack has successfully been prevented!

—

Double-spend

S B

» Malroy’s chain never becomes
the longest

State
Transaction Transaction

From: Malroy From: Malroy
To: Alice To: Malroy_2
Amount: 1000 Amount: 1000

Balance: 337

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain .
LSolving double-spend B

s =5
Double-spend \G/ /
OO

0o000

Note how blocks don’t just suddenly appear anymore. Instead the miners are
constantly working on new blocks. This is represented by the dotted blocks.
The situation is largely the same as it was for the same attack in the last
chapter. Malroy starts work on his branch as soon as the previous block has
been announced to the network. However, this time, Malroy can’t easily
create a longer branch. He needs to mine each block. This is a lot of work.
Since Malroy’s mining power is less than the combined power of all the other
miners in the network, Malroy creates new blocks at a slower rate. Thus, his
branch never becomes the longest one and never becomes the state of the
system.

The attack has successfully been prevented!

50% attack @

» Double-spend is possible
» >50% of network’s power is needed
» With that, Malroy could produce new blocks faster than the rest of the network

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

- Blockchain
LSolving double-spend

L—50% attack

The only way the attack could succeed is if Malroy had more mining power
than all the other miners combined. That is to say, Malroy would need more
than 50% of the network’s mining power. Thus the term 50% attack.

Malroy then would produce more blocks than all the other miners combined.
This would allow him to create his own branches of the chain which would
grow faster than any other branch and become the accepted state of the
network eventually.

p2p networking attack setup
-

Most Blockchain currencies use a
p2p network

» to distribute the transactions
» to distribute the blocks

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

- Blockchain
LSolving double-spend

Lp2p networking attack setup

If Malroy controls Alice’s access to the p2p network used to distribute
transactions (either by controlling her network connection or by controlling the
peers she connects to) he would have a lot of power. He could:

e Control Alice’s view of the network
e Present to her blocks and transactions he does not present to the rest of the network
e Hide from her blocks and transactions the rest of the network sees

This can be used to perform a slightly more complicated and sophisticated
form of double-spend attack.

Network attack

Public network view: Bob’s view:

—_— State —_— State
Transaction Transaction

From: Malroy From: Malroy
To: Malroy_2 B I 52523 ob Svslmer : 33023
Amount: 23000 alance: Amount 23000 alance:

Owner: Malroy
Balance: 8337

Balance: 23000

» Bob can’t see the other, longer branch

» Thus in his view, the transaction
becomes part of the state

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockehain —
I—Solving double-spend =)

L Network attack

This attack is hard to perform, so Malroy will attempt to steal something more valuable this time. He will steal a car. For that, he goes to Bob
who happens to be a car dealer. He will steal a 23000 Euro car.

Malroy control’s all the nodes to which Bob is connected on the P2P network. When paying for the car, Malroy creates two different
transactions which are not compatible with one-another. The first one is a transaction to Bob. Malroy sends this transaction to Bob only, the
rest of the network does not see this transaction. The second transaction cretad by Malroy transfers the same money from his first to his
second bank account. This transaction gets published to the network.

As soon as the previous block has been completed by the miners, work on the new block starts. The networ will now create a block which
contains the transaction from Malroy to his second account. Malroy alone is working on alternative block which contains the transaction to
Bob.

The netowrk as a whole has more compute power than Malroy on his own and thus procudes blocks at a faster pace. Malroy makes sure to
block these new blocks so that Bob does not know about their existance. Eventually, Malroy succeeds in creating his block. He sends this
blcok to Bob. Bob, who has not received any of the blocks recently created by the network, thinks that the block created by Malroy is in fact
the longest branch. In Bob’s opinion, the transaction transfering money from Malroy to Bob is now part of the state. He hands over the car

to Malroy.

Network attack

» The transaction to Bob is not part of the Transaction Transaction
state [5:?3-;?;;’_‘2] [ig?saa“"“y]
> BOb doeS not have the money Amount: 23000 Amount: 23000 -
Owner: Malroy_2

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Blockchain o ———
L Solving double-spend e
L Network attack :

Malroy drives away. After a while he stops the attack. Bob gets unfiltered
access to the network again. The two chains get merged. Bob’s special chain
is shorter than the actual network chain, which is why the transaction from
Malroy to Bob is not part of the state.

So this kind of attack still works despite POW.

However, on the following slides, | will explain why such an attack is not worth
the effort.

2019-02-20

LBlockchain e
LSolving double-spend
LNetwork attack

Short discussion: 10 minutes, the block time used by Bitcoin, is a long time. If
you buy, say, an ice cream, you don’t want to wait 10 minutes for your
transaction to be processed. Because of this, some people will accept
transactions as soon as they appear on the network - given of course, that
the transaction is valid and not in conflict with any other transaction that is
already part of the chain.

This will work fine in most cases, and if the ice cream seller gets tricked once
or twice a week, he can probably still run his business. However, this practice
is NOT SECURE AT ALL. Transactions should only be accepted as valid
once they are included in a block.

This very network attack demonstrates why. If the car dealer were to accept
transactions that are not yet in any block, all the attacker would have to do
was to send a transaction to the car dealer. He would not have to put in the
time to mine an extra block and thus the mechanisms described on the
following slides would not work.

What happened

v

The attack still worked
It's now costly though
Malroy’s computer can either:

» Perform the attack
» Mine on the network

For the time of the attack, Malroy has to decide
This makes using the computer for the attack expensive

v

v

v

v

Just how expensive exactly?

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

- Blockchain
LSolving double-spend

L What happened

The attack of course uses compute power and electricity, both of which have
a cost. This cost however, is not what actually makes the attack expensive.
Much more expensive than computers or the electricity used, is the time
wasted. While the computer is trying to create a fake block for Bob, it can’t
simultaneously mine on the actual chain. The block rewards Malroy could
earn but doesn’t due to using the compute power for the attack is what makes
the attack so expensive.

Cost of the attack

» Malroy’s compute power: 20% = % of the network
» Network average block time: 10min
» Block reward: 1000 Euro

Malroy needs to create one block:

Time Malroy needs to to create one block
100%Power < 10min — 20%Power < 50min

What if Malroy was mining for the same 50 minutes instead?

Reward in 50min mining

100% Power < 5Blocks — 20%Power < 1Block — 1000Euro

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBlockchain
I—Solving double-spend
L Cost of the attack

The values in the slide above are example values we are going to use for the
calculations. If the produces 1 Block every 10 minutes, then it will take Malroy
on his own 50 minutes to create a single block. That means that for 50
minutes, he can’t mine on the actual chain.

During 50 minutes, the network produces 5 blocks, one of which, on average,
would be produced by Malroy. So by performing the attack, he misses one
block reward, worth 1000 Euro.

This does not depend on how much power the attacker has - an attacker with
30% of the network compute power takes less time to perform the attack, but
he loses more block rewards per time.

Protection from the attack

Malroy can chose:
» Do the attack
» Steal a 23000 Euro car

» Not do the attack
» Earn 1000 euro mining

Attacker’s power

The power of the attacker does not matter. An attacker with more power needs less time,
but he looses more money per time.

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

- Blockchain
LSolving double-spend

LProtection from the attack

In our example, performing the attack makes sense, since the car, at 23000
Euro is worth a lot more than the single block reward. So Bob needs to take
additional measures to be secure.

Waiting
L 2

By waiting another block, Bob makes the attack twice as expensive.
So the larger a transaction we protect, the longer we have to wait. You can easily calculate
for how long you have to wait to be secure:

How long to wait?

[amount < Blockreward] + 1

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

- Blockchain
LSolving double-spend

LWaiting

To protect himself from an attacker, Bob doesn’t hand over the car
immediately. Instead, once the transaction has been included in a block, and
thus become part of the state, Bob waits until some more blocks have been
added to the same branch.

If Bob was under attack, the attacker would have to create those additional
blocks as well. It would cost him even more time to do so. All this time the
attacker spends on creating the additional blocks he can’t spend mining.
Thus it costs him money. The longer we wait, the more expensive an attack
becomes.

Bob can easily calculate how long exactly he has to wait in order to be
secure, based on how expensive the product is he is selling and how high the
block reward is.

By doing so, Bob makes sure attacking him is never worthwhile. Noone will
have an incentive to attack him since doing so makes no sense at all
economically speaking.

Bob’s protection

Public network view: Bob’s view:

—_— State E—— State
Transaction Transaction

From: Malroy
To: Bob
Amount: 23000

From: Malroy
To: Malroy_2
Amount: 23000

Transaction becomes
part of the state

Bob hands over
the car

Bob will have to wait for 24 Blocks before handing over the car.

2019-02-20

- Blockchain
LSolving double-spend

SH=N-=
LBob’s protection \ ‘) \

At 1000 Euro per block, Bob should wait 23, probablly more like 24 blocks
before handing the car to Malroy (or any other customer for that). The graphic
above is not accurate, since | can’t fit that many blocks onto a single slide ;)

Section 4

Bitcoin

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBitcoin

| talked a lot about generic Blockchain designs and concepts. To get a better
idea of how these concepts are implemented, we will now take a look at the
Bitcoin Blockchain.

Subsection

Bitcoin
Blocks

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Body

» Contains transactions
» Ordered
» Dependant transactions are in the correct order

» The first transactions is Coinbase

Coinbase transaction

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Bitcoin
LBlocks
- Body

In IT, we like to separate matadata from data by putting the data in what we
call a body and the metadat into a header. We do this for messages, network
protocols and file formats. We also do it for Blockchains. In Bitcoin, a block’s
body is comprised of the blocks it contains. The header contains some
metadata.

The transactions inside the block’s body are ordered. They get ordered by
the miner who creates the block. The miner has to follow few rules for that. If
Message "b" depending on message "a" is in the same block as "a", then
they have to be in the block in the correct order. Other than that, the miners is
basically free to order the transactions whichever way he likes. But once the
order has been decided on, it can’t be changed anymore.

The leftmost transaction (the first transaction inside the block), is the

Coinbase transaction.

Merkle tree

S 8

Bitcoin uses a Merkle tree to secure the transactions. Root of the Merkle tree is part of the
Block header.

» Binary tree

» A node is the hash of the two child nodes

» Bitcoin uses sha256 double hashes

» aka. dhash, double-sha256
» sha256(sha256(...))

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Bitcoin
LBlocks
L Merkle tree

The Merkle tree, as used by Bitcoin, is a binary tree. Every node, except the
leave nodes, is formed by creating the doublehash of the concatenation of
the two child nodes.

Merkle tree visualization

(version [prev_blk_hash | Merkle Root | timestamp | difficuty [nonce)

dhash(h12 || h13)

/ \

\ \

A
S

) A A A
I
ﬂ

i

.l’*’\
b

(e
5

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBitcoin
LBlocks
L Merkle tree visualization

The Merkle Root is put into the Block header. The collection of transactions
become the block body. The rest of the Merkle tree is then no longer needed.
If someone validates the block, they retrieve both the header and the body,
then create the Merkle tree from the body they retrieved and compare the
Merkle root to the value from the block header. If the two values match,
everything is in order

It is important that the order of blocks in the body is preserved, otherwise the
result of forming the Merkle tree would be a different one.

All transactions are secure. If one would be changed or replaced, the hash of
that transaction would change, which would be reflected in the node above,
which in turn would change that node’s parent and so on until finally, the
Merkle root would be a different one.

s X

(version prev_blk _hash | mrkl_root | timestamp difficulty nonce)
— e e P P S)

32 Bit 256 Bit 256 Bit 32 Bit 32 Bit 32 Bit

version Block version. Currently at 4
prev_blk_hash Hash of the previous block header. Reference to the previous block.
mrkl_root Reference to the transactions. Root node of the Merkle tree.
timestamp Standard UNIX timestamp. Complicated rules here.
difficulty Difficulty of the block. Network difficulty is recalculated every 2016 blocks.
nonce Nonce used to manipulate the block hash. Note: too short.

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBitcoin

LBlocks
L Header

The image above shows the header of a Bitcoin Block.

The prev_blk_hash stands for Previous Block Hash and is just that - the hash
of the previous block. In our generic Blockchain construct from the chapters
before, we have seen that each block references it's previous block in order to
form a chain - this is Bitcoin’s way of doing that.

Rules for block Timestamp:

"A timestamp is accepted as valid if it is greater than the median timestamp
of previous 11 blocks, and less than the network-adjusted time + 2 hours.
‘Network-adjusted time’ is the median of the timestamps returned by all
nodes connected to you." - The Bitcoin Wiki: https:
//en.bitcoin.it/w/index.php?title=Block_timestamp&oldid=51392
The difficulty is an expression of how hard it was to create the PoW for this
block.

The nonce is a field used for mining, see below.

2016 Blocks equals 14 days.

https://en.bitcoin.it/w/index.php?title=Block_timestamp&oldid=51392
https://en.bitcoin.it/w/index.php?title=Block_timestamp&oldid=51392

Bitcoin mining

PoW:
» Bitcoin uses the Block Hash for PoW
» dhash(block_header)
» PoW: First n Bits of the Block Hash need to be 0
» Mining by incrementing the nonce field
» Too short (32bit nonce for 256bit Hash)

» Secondary nonce

» tx input / input script of Coinbase transaction
» Change in transaction changes Merkle root

Difficulty:
» Difficulty is adjusted every 2016 Blocks (14 days)
» Network speed target: one Block ever 10 minutes

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Bitcoin
L Blocks
Bitcoin mining

Here is how mining in Bitcoin works: The Hash of the block header is used as a PoW. The difficulty in creating it is that the first n bits of the
header need to be valud 0. A miner can only achieve this by modifying the header, hashing it and testing if the hash meets the criteria. If it
does not, the miner has to modify the header again and repeat the process. The way the miner modifies the header, is by incrementing the
nonce field.

The nonce field is only 32 Bit though and the Hash is 256 bit, so the nonce field might not always be enough to find a matching Hash,
depending on the difficulty target. So the miner modifies another value under their control - the Coinbase transaction. More precisely, the
field used to reference where the money is coming from is not used in the Coinbase transaction and can be filled with arbitrary data.

Modifying the Coinbase transaction changes its hash which eventually changes the Merkle root and thus the header.

Coinbase: Creating money

The miner of a new block gets a reward. The reward is the sum of:
» Fixed reward/ newly generated money

» Started at 50 Btc per Block
» Halves every 210000 Blocks (ca. 4 years)

» The transaction fees of all transactions in the block
To do this, the miner creates an additional transaction:

» So called Coinbase transaction

» First (left most) transaction in the Block

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Bitcoin
L Blocks
L Coinbase: Creating money

Adjusting the difficulty target works like this:

Every Bitcoin client compares the actual time it took to generate these blocks
with the two week goal and modifies the target by the percentage difference.
Each node calculates the network difficulty independently from all other
nodes. It is then, important that they all get the same result and thus that they
all use the same algorithm.

Subsection

Bitcoin

Light clients

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Types of Bitcoin clients

» Full node

Stores the entire Blockchain

Seeds the Blockchain to the network
Validates every block

Validates every transaction

» Pruning client

Validates all blocks

Validates all transactions

Only stores parts of the Blockchain
See the bonus slides

» Light client / SPV client
» See below

v

vYyy

v

vYyy

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBitcoin
L Light clients
LTypes of Bitcoin clients

To my knowledge, there are three types of Bitcoin clients:

Full clients store the entire blockchain and seed the blocks into the network.
They validate each transaction and each block.

Pruning clients also check all transactions and all blocks but they don’t store
the entire blockchain. Instead, they get rid of blocks they no longer need to
save storage.

Light clients finally only validate single transactions. They use little bandwidth
and storage and are suitable for mobile clients.

Chain of Block headers

» Download just the headers

» PoW can be checked from just the header

» Previous block can be checked from just the header
» Creating a header is as hard as creating a block!

Advantage:
» 450000 blocks
» Blockchain: >95 GB (>100GB with indexing)
» Block headers: <100 MB

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBitcoin
L Light clients
LChain of Block headers

The first thing a light Client needs to validate a transaction is the list of all
block headers. Each block header references the previous’ block header by
it's hash, thus the correct order of blocks can be determined from the headers
alone. The PoW too can be checked from the header alone, since it's the
header’s hash. Creating a header is as hard as creating an entire block, so
re-creating the chain like this is as secure as donloading the entire
Blockchain, but much faster.

At the time of writing, there are almost 450000 blocks in the Blockchain which
is in total about 95 GB in size. A list of all Block headers can be stored in well
under 100 MB.

Merkle branch

» We have the Merkle root

» We can get it securely from the Block header
» We do not have the elements it consists of
» We are interested in a single element

» A single transaction

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBitcoin
L Light clients
LMerkle branch

The Merkle tree allows us to secure all the transactions. Even more
interesting though is another feature - the Merkle branch. The Merkle branch
allows for a single branch to be extracted and then stored in a space efficient
yet safe way. Despite that, it still proves that a transaction is part of a block.

Merkle branch visualization

Merkle Root

dhash(h12 || h13)

hiz=
dhash(h8 || h9) h13

h12 ho=
dhash(h2 || h3)

)
E—

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBitcoin

Light clients ==
LMerkle branch visualization /\7?

For the Merkle branch, instead of downloading all transactions, we only need
the one transaction and then one hash from each level of the tree.

In the above example, we can prove that transaction t3 is part of the block by
downloading the transaction itself among with the hashes h2, h12 and h13.
From these four values, we can form the Merkle branch and get the Merkle
root.

Merkle branch advantages

Download a Merkle branch instead of all transactions:
» Less elements
» Smaller (hashes instead of transactions)
» The advantages get larger the bigger the tree
Example: Block with 1600 transactions:
» 1600 transactions
» 1 transaction + 11 hashes

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

- Bitcoin
L Light clients
L Merkle branch advantages

The Merkle branch will, especially for very large blocks, be smaller than the
entire body.

Only the specific transaction plus log.(number of transactions in the block)
hashes need to be downloaded to form and verify the Merkle branch for a
transaction.

Downloading and verifying the Merkle branch is just as secure as
downloading the entire Block body.

» Simple Payment Verification
» Proof that a transaction is part of the chain
» Avoid downloading the entire chain

1. Retrieve all block headers

2. Rebuild longest branch

3. Retrieve a transaction

4. Retrieve the Merkle branch for the transaction

5. Match the Merkle branch to the chain of block headers

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBitcoin
L Light clients
Lspv

Now we have everything needed to create a light client. This specific type of
client is called an SPV client. SPV stands for Simple Payment Verification
and was described in Satoshi’s Bitcoin Whitepaper.

An SPV client downloads the block headers and forms the Blockchain from
them. Then it receives a specific transaction. It requests the Merkle branch
for this specific transaction. The Merkle branch connects the transaction to
the block headers and thus proves that this transaction is actually part of the
Blockchain.

This way, an SPV client can securely receive transactions.

Questions?

Ask them now or contact me:

> 5346 (LEGO)
> 7869 (PUNX)

» niklaus@mykolab.ch I

» vimja@xmpp.honet.ch

Section 5

Bonus Slides

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Subsection

Bonus Slides
Branches in the chain

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Status switch between branches

s

The longest chain of blocks represents the current state. If we display the chain as a tree,
then that is the longest branch. The root of that tree is called the Genesis Block.

/ OOCCO00,
OO0

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

L Bonus Slides |
Branches in the chain | o
L Status switch between branches Loa2ego0,

R56a

If suddenly, another branch were to become longer, then that branch would
then be the state of the system.

Block height and depth

Height identifier
Depth expression of security

Genesis Block /@

o Hion o |

@ Depth

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

2019-02-20

LBonus Slides
Branches in the chain —
L—Block height and depth G@ cﬁG@D{%'D'D

ataty

Even though we don’t use numbers of blocks anymore to determine their
dependencies, numbering them can still be useful. It allows for easy
referencing of specific blocks. There are two important ways of doing this:

Height The block height expresses the block’s distance from the Genesis Block. The height
of a block is always the same and does not change when new blocks are added to
the system. Every block in the system has a height.

Depth The depth of a block expresses the block’s distance from the end of the branch.
When a new block is appended to the branch, the depth of every block in the branch
is increased by one. The depth is usually only expressed for blocks of the longest
branch.

Later on when we introduce POW, the depth will become an important
expression of security.

Subsection

Bonus Slides

Double-spend

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Conflicting tra

Transaction

From: Malroy
To: Alice
Amount: 1000

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

saction in double-spend attacks

Transaction

From: Malroy
To: Malroy_2
Amount: 1000

Incompatible

State

Owner: Alice
Balance: 42
Owner: Malroy
Balance: 337
Owner: Malroy_2
Balance: 1000

}

S

» New blocks containing the old
transaction would conflict

» They would be invalid

» And they could not become
part of the state

2019-02-20

L Bonus Slides .
LDouble-spend &)

= &
LConflicting transaction in double-spend attacks i\/L =

RS

By creating a new transaction (the one transfering the money onto the vimja2
account) that is conflicting with the earlier transaction (the one transfering the
money to the car dealer) and putting the new one into my chain/branch, |
prevent the first transaction from ever becoming part of the same branch
again. A block containing one of them will be in conflict with block containing
the other, thus they can’t become part of the same branch.

Subsection

Bonus Slides

Mining

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Example scenario with multiple miners

Miner A

Miner B

Miner C

s X

o

000
0oad

A

Block #n+1

» Miner A finishes Bock #n+1

000"
0ado

-]

000
00O

A

Block #n+1

0o

-~

Block #n

000

0co

Block #n+2

== i » Miner A immediately starts
DQ_, work on #n+2

e C]_Q » Miner A broadcasts Block #n+1
Q Q » Miners B and C both receive
0 J the completed Block #n+1 from
D’ C]’ miner A

» They change their transaction
pools accordingly

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Example scenario with multiple miners

s X

» Miners B and C immediately
start work on Block #n+2

Miner A 4—@@@ @@@‘ OC]
000l 000l .00
Miner B 4—@’@@ @@@‘ C]C]
000l 000 .00
wee D00 Ba0- 00
oog Oodg .gd

A

A

A

U
O

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

Copyright

:..w

» This presentation is licensed under a Creative Commons Attribution 4.0 International
License http://creativecommons.org/licenses/by/4.0/
» In the creation of this presentation, | used the Feather Beamer Theme by "Lilyana
Vankova" which is released under the GPLv3 license.
» As required by the GPLv3, | make the exact sources of the theme, as used by me,

including all modifications | made, available to you. You can download them from
https://gitlab.honet.ch/vimja/beamer_template (commit 1776ad90).

Niklaus 'vimja’ Hofer | Introduction to Blockchains | 33c3 | February 20, 2019

http://creativecommons.org/licenses/by/4.0/
https://gitlab.honet.ch/vimja/beamer_template

	Systems for representing ownership
	State-transition systems
	Double-spend

	Blockchain (without PoW)
	The underlying network
	Establishing a Consensus
	Double-spend on Blockchains

	Blockchain
	PoW and mining
	Solving double-spend

	Bitcoin
	Blocks
	Light clients

	Bonus Slides
	Branches in the chain
	Double-spend
	Mining

